Mgr. Miloslava Kollarčíková
Konzultant programu
e‑mail: |
---|
Doktorské studium v prezenční nebo kombinované formě.
Program je možné studovat pouze jednooborově.
Cílem studia je vzdělávat studenty v oblasti věd o živé přírodě a připravovat je jako vysoce kvalifikované pracovníky pro vědeckou činnost. Úvodní část studia je vyhrazena prohloubení teoretických a praktických znalostí. Paralelně s tím probíhá zpracování samostatné literární rešerše k zadanému tématu doktorské disertace. Samotné těžiště činnosti studentů spočívá v jejich vlastní vědecké práci. Studenti jsou školitelem vedeni, aby byli schopni samostatně realizovat všechny fáze vědeckého projektu. Jsou též vedeni ke zpracování získaných experimentálních dat metodologicky relevantně, stejně tak k jejich interpretaci a následné prezentaci v různých formách. Program je vysoce multidisciplinární a ve srovnání s tradičním studiem biologie je více zaměřen metodologicky a analyticky. Díky přístupu ke špičkové infrastruktuře, mohou studenti lépe kombinovat různé biochemické, bioanalytické i vizualizační instrumentální techniky s řešením biologických problémů, což zvyšuje dopad jejich vědecké činnosti i následně jejich flexibilitu uplatnění na trhu práce včetně pozic v mimoakademické sféře, např. v rámci existujících biotechnologických firem či v nově vznikajících spin-off.
Koncepce programu reflektuje současnou úroveň poznatků vědy, potřeby trhu práce a celkové trendy v oboru. Současně těží ze systému podpory v rámci tzv. CEITEC PhD School, která představuje koncepci péče o doktorské studenty zapojené do výzkumných týmů v CEITECu a současně klade důraz na rozšíření kompetencí budoucích absolventů v socio-manažerských, technologických a přenositelných dovednostech. Ty jim umožní vést svou navazující výzkumnou činnost efektivním a moderním způsobem a poskytnou jim velmi dobrý přehled o etických aspektech výzkumu nezbytných pro bádání v oblasti živých věd a výzkumu a vývoji obecně.Life for Science. Science for Life.
Program cílí na mezinárodní uplatnění absolventů. Je připravován v české i anglické verzi, výuka většiny předmětů, všech seminářů a ve velké míře i výzkumná činnost probíhá v anglickém jazyce. Prostředí na CEITEC MU je významně mezinárodní, takže studenti jsou exponováni komunikaci v angličtině nejen při oficiální výuce, ale prakticky všude v rámci CEITEC.
Významným příspěvkem k osvojení praktických dovedností studentů DSP Vědy o živé přírodě je jejich přirozené zapojení do výzkumných týmů na CEITEC MU. Tím mohou studenti bezprostředně získávat potřebné praktické návyky pro řízení týmu a vědeckých projektů, osvojit si dovednosti navazování kontaktů a přímým zapojením do řešení výzkumných projektů a grantů (včetně projektů H2020 a ERC grantů) pochopit i problematiku financování výzkumu. Studenti mohou taktéž běžně využívat jedenácti unikátně vybavených sdílených laboratoří a získat touto formou významnou praktickou zkušenost v rámci tzv. interní stáže, případně v jiné instituci v ČR v rámci externí stáže (doporučený rozsah 10 pracovních dní (80 pracovních hodin).
Povinnou součástí studijních povinností v doktorském studijním programu je absolvování části studia na zahraniční instituci v délce nejméně jednoho měsíce, nebo účast na mezinárodním tvůrčím projektu s výsledky publikovanými nebo prezentovanými v zahraničí nebo jiná forma přímé účasti studenta na mezinárodní spolupráci.
V programu jsou podporovány Collaborative PhD, tj. absolvování doktorského projektu ve spolupráci s komerčním subjektem. Ty umožňují exponovat studenty více neakademickému prostředí. Také v rámci systému TAC dochází k častější spolupráci studentů s odborníky z praxe.
O doktorské studenty PřF MU se stará Oddělení pro doktorské studium, kvalitu, akademické záležitosti a internacionalizaci:
https://www.sci.muni.cz/student/phd
Na webové stránce oddělení najdete informace ke studiu:
ale také úřední hodiny, kontakty, aktuality, informace k rozvoji dovedností a ke stipendiím.
Podrobné informace k zahraničním stážím najdete na této webové stránce:
https://www.sci.muni.cz/student/phd/rozvoj-dovednosti/stay-abroad
V doktorském programu je kladen velký důraz na internacionalizaci, jsou zde také vytvářeny podmínky pro interdisciplinární řešení zadaných témat dizertačních prací a klade se důraz na posílení socio-manažerských a přenositelných dovedností. Tím se zvyšuje reálná šance absolventů na uplatnění ve špičkových vědeckých i technologických, akademických i komerčních týmech po celém světě, jako např. ve:
Údaje z předchozího přijímacího řízení (přihlášky 1. 12. 2024 – 28. 2. 2025)
Požadavky jsou podrobně specifikovány zde. Přijímací řízení probíhá ve dvou kolech. První kolo je založeno na posouzení přihlášky - přijímány a posuzovány budou pouze úplné přihlášky se všemi povinnými součástmi. Uchazeči vybraní do dalšího kola budou pozváni na přijímací pohovor s komisí.
Annotation:
This Ph.D. project is part of a national initiative to build a cutting-edge platform for storing and analyzing omics data, spanning genomic, epigenomic, transcriptomic, and proteomic datasets. The platform will be integrated with European networks created through the Genomic Data Infrastructure (GDI) project, enabling the sharing and analysis of data across borders, granting access to vast amounts of multi-omics data. This level of collaboration requires a federated approach, where data remains at local nodes, while computation and model training happen across distributed systems, ensuring both data privacy and security.
The primary goal of this Ph.D. will be to develop and orchestrate bioinformatics tools that leverage federated learning. These tools will facilitate scalable, collaborative computation across multiple European institutions, allowing local nodes to train models independently and contribute to a global model without centralized data storage. The Ph.D. candidate will design and deploy these federated bioinformatics tools, focusing on integrating long-read sequencing technologies - emphasizing the detection of structural variants and modeling methylation patterns - along with short-read sequencing data for a comprehensive analysis.
Federated learning will be crucial for efficiently processing the distributed datasets, allowing the platform to securely compute over sensitive data while preserving its informative value. By developing novel algorithms and workflows that integrate federated computing with omics data, the Ph.D. candidate will push the boundaries of current bioinformatics approaches. The research will lead to first-author publications, making significant contributions to both national and European scientific advancements in genomics, epigenomics, and multi-omics data integration.
Requirements for candidate:
The ideal candidate should possess strong IT skills, particularly in coding, machine learning, and data science, with a solid understanding of bioinformatics. Experience with sequencing data analysis, especially long-read and short-read technologies, is highly advantageous. Familiarity with federated computing concepts is also a plus.
PLEASE NOTE: Before starting the formal application process, applicants must register on the CEITEC PhD School website (link).
More information:
https://www.ceitec.eu/admission-step-by-step/t11340
Recommended literature:
1.Zhao, Y., et al. “Federated Learning with Non-IID Data.” Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (2018).
2. Li, T., et al. “Federated Optimization in Heterogeneous Networks.” arXiv preprint arXiv:1812.06127 (2018).
3.Celi, L. A., et al. “Federated Learning Applications in Medicine: A Systematic Review.” PLOS Digital Health (2022).
4.Rieke, N., et al. “The Future of Digital Health with Federated Learning.” Nature Medicine 26 (2020): 1691–1700.
5.Wang, S., et al. “Privacy-Preserving Federated Learning for Bioinformatics Data Integration.” IEEE Transactions on Big Data (2022).
Dishevelled (DVL) is the central hub of Wnt signal transduction that integrates and transduces upstream signals through distinct cytoplasmic cascades. Looking at the many DVL faces reported in literature, three salient features underlying its function in signaling can be highlighted: (1) it interacts with more than seventy binding partners, (2) it is heavily phosphorylated at multiple sites by at least eight different kinases, in particular by Ck1epsilon/sigma after Wnt stimulation, and (3) it consistently forms puncta in the cytosol, that are phase-separated self-assemblies also called liquid droplets.
Our working hypothesis is that DVL conformational plasticity mediated by the order-disorder interactions allows the combinatorial integration of phosphorylation input, partners binding, self assembly in droplets, and allosteric coupling, to exquisitely control signal routing. We integrate structural biology (NMR, SAXS, X-ray, MS-HDX) and biophysical techniques (FRET, ITC, BLI) with cellular readouts (TopFlash, BRET) to understand DVL structure, function, and regulation. Candidates can choose among three open questions, that if resolved, will have significant impact on Wnt research.
1) Does disorder provide new contexts to structured domain(s) and, hence, enhance the DVL functional space associated with them?
2) Is there a direction, order or hierarchy in the phosphorylation of individual S/T sites and clusters in DVL?
3) What are the physical behaviors associated with intrinsic disorder and their connection to DVL liquid-liquid phase separation?
Requirements on candidates:
Biomolecular NMR, Biochemistry, Molecular Cell Biology
More information: RG Protein-DNA Interactions
PLEASE NOTE: Before starting the formal application process, applicants must register on the CEITEC PhD School website (link).
More information:
https://www.ceitec.eu/admission-step-by-step/t11340
Recommended literature:
Kravec M. et al. A new mechanism of posttranslational polyglutamylation regulates phase separation and signaling of the Wnt pathway protein Dishevelled. Embo J., 2024 (accepted)
Hanáková K. et al. Comparative phosphorylation map of Dishevelled 3 links phospho-signatures to biological outputs. Cell Commun. Signal., 2019. 17: p. 170
Harnoš J. et al. Dishevelled-3 conformation dynamics analyzed by FRET-based biosensors reveals a key role of casein kinase 1. Nat. Commun., 2019. 10: p. 1804
Recommended literature:
Aleš Novotný, Jan Novotný, Iva Kejnovská, Michaela Vorlíčková, Radovan Fiala, Radek Marek. Revealing structural peculiarities of homopurine GA repetition stuck by i-motif clip. Nucleic Acids Research, 2021, 49, 11425. doi:10.1093/nar/gkab915.
Annotation:
With nearly 10 million lives claimed annually, cancer remains one of the leading causes of mortality worldwide, highlighting the urgent need for more effective treatments. One promising strategy involves mRNA-based cancer immunotherapy vaccines, which require a drug delivery system capable of reliably reaching the cytosol. Developing such delivery systems is challenging: they must ensure cytosolic delivery and therapeutic efficacy while maintaining safety, long-term stability, and compliance with scalable manufacturing standards - including high mRNA loading efficiency and uniform particle size. Current lipidand polymer-based systems offer distinct advantages but integrating lessons from both may help develop more effective next-generation carriers. A major limitation remains the incomplete understanding of nanoparticle assembly and disassembly under diverse physiological conditions (e.g., extracellular fluids, endosomal compartments, cytosol). This project will use coarse-grained molecular simulations, complemented by in-house experimental validation, to gain molecular insights in the controlled system assembly and disassembly. Our goal is to guide the rational design of improved mRNA delivery systems to advance the efficacy of cancer immunotherapy.
Requirements for candidate:
Msc in computational biophysics/chemistry/physics and related fields
Experience with Molecular Dynamics using coarse grained or atomistic models
Advantage is experience with simulations of disordered proteins/polymers and membranes
Excellent track record
Good English language – spoken and written
Motivated person with collaborative mind set
PLEASE NOTE: Before starting the formal application process, applicants must register on the CEITEC PhD School website (link).
More information:
https://www.ceitec.eu/admission-step-by-step/t11340
Recommended literature:
Paunovska K., et al.: Nat Rev Genet 2022, 23, 265–280, Doi: 10.1038/s41576-021-00439-4
Hou X., et al.: Nat Rev Mater 2021, 6, 1078–1094, Doi: 10.1038/s41578-021-00358-0
Yasuda I. et al.: J. Chem. Theory Comput. 2025, 21, 5, 2766–2779, Doi: 10.1021/acs.jctc.4c01646
Chew P.Y., et al.: Chem. Sci., 2023,14, 1820-1836, Doi: 10.1039/D2SC05873A
Requirements on candidates:
Motivated smart people who have the “drive” to work independently but are also willing to learn from other people in the lab and collaborate.
Candidates should have a master’s degree in Molecular biology, Biochemistry, or a similar field and have a deep interest in molecular biology and cancer cell biology.
More information: RG Microenvironment of Immune Cells
PLEASE NOTE: Before starting the formal application process, applicants must register on the CEITEC PhD School website (link).
More information:
https://www.ceitec.eu/admission-step-by-step/t11340
Recommended literature:
1. Hoferkova E, et al…. Mraz M. Stromal cells engineered to express T cell factors induce robust CLL cell proliferation in vitro and in PDX co-transplantations allowing the identification of RAF inhibitors as anti-proliferative drugs. Leukemia. 2024 Aug;38(8):1699-1711
2. Pavlasova G, et al…. Mraz M. Ibrutinib inhibits CD20 upregulation on CLL B cells mediated by the CXCR4/SDF-1 axis. Blood. 2016 Sep 22;128(12):1609-13. doi: 10.1182/blood-2016-04-709519. Epub 2016 Aug 1. PMID: 27480113 Free PMC article
3. Kipps et al. Chronic lymphocytic leukaemia. Nat Rev 2017 https://pubmed.ncbi.nlm.nih.gov/28102226/
4. Seda V, Mraz M. B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells. Eur J Haematol. 2015 Mar;94(3):193-205. doi: 10.1111/ejh.12427. Epub 2014 Sep 13. PMID: 25080849 Review.
Recommended literature:
1. Filbeck, S., et al., Ribosome-associated quality-control mechanisms from bacteria to humans. Mol Cell, 2022. 82(8): p. 1451-1466.
2. Ikeuchi, K., et al., Collided ribosomes form a unique structural interface to induce Hel2-driven quality control pathways. EMBO J, 2019. 38(5).
3. Saito, K., et al., Ribosome collisions induce mRNA cleavage and ribosome rescue in bacteria. Nature, 2022. 603(7901): p. 503-508.
4. Narita, M., et al., A distinct mammalian disome collision interface harbors K63-linked polyubiquitination of uS10 to trigger hRQT-mediated subunit dissociation. Nat Commun, 2022. 13(1): p. 6411.
5. Wu, C.C., et al., Ribosome Collisions Trigger General Stress Responses to Regulate Cell Fate. Cell, 2020. 182(2): p. 404-416 e14.
Requirements for candidate: Master's degree in Chemistry/Biochemistry/Biology/Biophysics
PLEASE NOTE: Before starting the formal application process, applicants must register on the CEITEC PhD School website (link).
More information:
https://www.ceitec.eu/admission-step-by-step/t11340
Recommended literature:
Requirements for candidate:
Master's degree in Molecular or Cellular Biology/ Biochemistry /Chemistry / Biophysics
Prior experience with organoid production, induced pluripotent stem cells (iPSCs), or protein NMR spectroscopy is considered an asset.
PLEASE NOTE: Before starting the formal application process, applicants must register on the CEITEC PhD School website (link).
More information:
https://www.ceitec.eu/admission-step-by-step/t11340
Requirements on candidates:
Motivated smart people who have the “drive” to work independently but are also willing to learn from other people in the lab and collaborate.
Candidates should have a master’s degree in Molecular biology, Biochemistry, or a similar field and have a deep interest in molecular biology and cancer cell biology.
More information: RG Microenvironment of Immune Cells
PLEASE NOTE: Before starting the formal application process, applicants must register on the CEITEC PhD School website (link).
More information:
https://www.ceitec.eu/admission-step-by-step/t11340
Recommended literature:
1. Seda et al….Mraz FoxO1-GAB1 Axis Regulates Homing Capacity and Tonic AKT Activity in Chronic Lymphocytic Leukemia. Blood 2021 March (epub). https://pubmed.ncbi.nlm.nih.gov/33786575/
2. Pavlasova G, et al…. Mraz M. Ibrutinib inhibits CD20 upregulation on CLL B cells mediated by the CXCR4/SDF-1 axis. Blood. 2016 Sep 22;128(12):1609-13. doi: 10.1182/blood-2016-04-709519. Epub 2016 Aug 1. PMID: 27480113 Free PMC article
3. Seda V, Mraz M. B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells. Eur J Haematol. 2015 Mar;94(3):193-205. doi: 10.1111/ejh.12427. Epub 2014 Sep 13. PMID: 25080849 Review.
Zajišťuje | Přírodovědecká fakulta | |
---|---|---|
Typ studia | doktorský | |
Forma | prezenční | ano |
kombinovaná | ano | |
distanční | ne | |
Možnosti studia | jednooborově | ano |
jednooborově se specializací | ne | |
v kombinaci s jiným programem | ne | |
Doba studia | 4 roky | |
Vyučovací jazyk | čeština | |
Oborová rada a oborové komise |
Zajímá vás obsah a podmínky studia programu Vědy o živé přírodě? Zeptejte se přímo konzultanta programu:
Konzultant programu
e‑mail: |
---|